
THE ULTIMATE A-LEVEL AQA BIOLOGY CHEATSHEET PACK

Achieve Better Grades with Less Stress

Our intelligent platform provides high quality, personalised support that is more effective than private tutoring available 24/7 at a fraction of the cost

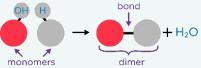
How to Use

The aim of this pack is simple — we wanted to condense the A-level Biology course into a few super condensed pages. Now you have a concise summary of the entire course that focuses on the most important definitions, key terms, diagrams and concepts.

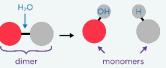
We've spent weeks working with top designers, academic writers and illustrators to ensure this is the best cheatsheet out there. Our promise to you is you won't find anything better. The cheatsheet pack has been built off the AQA specification to ensure no important information is missed — below is a table which summarises how our cheatsheets map to the AQA specification.

Specification Points	Cheatsheet
3.1.1—3.1.4.2	Carbohydrates, Lipids & Proteins
3.1.5.1—3.1.8	Nucleic acids, ATP, Water & Inorganic ions
3.2.1.1—3.2.2	Cell structure & Replication
3.2.3-3.2.4	Cell transport & Immunity
3.3.1-3.3.4.2	Gas exchange, Digestion & Mass transport
3.4.1-3.4.7	Genetic Information, Protein Synthesis, Classification & Biodiversity
3.5.1—3.5.2	Photosynthesis & Respiration
3.5.3-3.5.4	Energy, Ecosystems & Nutrient Cycles
3.6.1.1-3.6.2.2	Responses, Receptors, Neurones & Synapses
3.6.2.2-3.6.4.3	Muscles & Homeostasis
3.7.1	Inheritance
3.7.2—3.7.4	Populations, Evolution & Ecosystems
3.8.1—3.8.3	Stem Cells, Mutations, Gene Regulation, Cancer & Genome Projects
3.8.4.1-3.8.4.3	Gene Technologies

We hope you enjoy using it and wish you the best of luck in your A-levels.

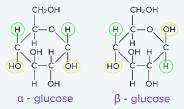


CARBOHYDRATES, LIPIDS & PROTEINS CHEAT SHEET



Monomers & Polymers

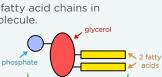
- Monomers are individual molecules that make up a polymer.
- Polymers are long chains that are composed of many individual monomers that have been bonded together in a repeating pattern.
- Condensation Reactions occurs when two molecules combine to form a more complex molecule with the removal of water.



• Hydrolysis Reactions occurs when larger molecules are broken down into smaller molecules with the addition of water.

Carbohydrates

 Monosaccharides are the simplest carbohydrates, consisting of only one sugar molecule (e.g. Glucose, Fructose & Galactose).


- Glucose is a hexose sugar with 2 isomers
- Disaccharides are sugars that are composed of two monosaccharides joined together in a condensation reaction, forming a glycosidic bond.

Disaccharide	Constituent monosaccharides
Maltose	$2 \times \alpha$ -glucose
Sucrose	glucose and fructose
Lactose	glucose and galactose

- Polysaccharides are formed by many monosaccharides joined together.
 - Starch, made of the amylose and amylopectin is the main polysaccharide energy store in plants, is composed of a-glucose.
 - In animals, the polysaccharide energy store is called glycogen, composed of α -glucose.
 - Cellulose is a structural component of plant cell walls, composed of long unbranched chains of β -glucose.

Lipids

- Fatty acids can be:
 - Saturated there are no double C=C bonds and the molecule has as many hydrogen atoms as possible.
 - Unsaturated there is at least one double C=C bond, therefore the molecule contains fewer hydrogen atoms than is maximally possible.
- A triglyceride molecule is formed by joining one molecule of glycerol to three fatty acids through three condensation reactions, forming ester bonds.
- Triglycerides have key roles in respiration and energy storage glycerol ____ due to its insolubility and high carbon to hydrogen ratio.
- Phospholipids replace one of the fatty acid chains in triglycerides with a phosphate molecule.
- The non-polar hydrophobic tails and the polar hydrophilic heads of phospholipids allow them to form phospholipid bilayers.

phospholipid

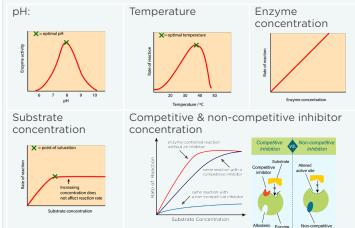
fatty acids

Proteins

- Amino acids are the monomer units used to make proteins.
- The 20 naturally occurring amino acids only differ in their R groups.
- Dipeptides are formed when two amino acids are joined together by a condensation reaction. forming a peptide bond.
- A polypeptide is a polymer made of many amino acids joined together by peptide bonds.
- A protein may contain one or more polypeptide chains.
- There are four structural levels:

Level	Definition	Bond type
Primary	The specific sequence of amino acids in a polypeptide chain	Peptide bonds
Secondary	The curling or folding of the polypeptide chain into α -helices and β -pleated sheets due to the formation of hydrogen bonds	Hydrogen bonds
Tertiary	The overall specific 3-D shape of a protein, which is determined by interactions between R groups and the properties of R groups	Hydrogen bonds Ionic bonds Disulphide bridges Covalent bonds Hydrophobic/ hydrophilic interactions
Quaternary	The specific 3-D shape of a protein that is determined by the multiple polypeptide chains and/or prosthetic groups bonded together	Hydrogen bonds Ionic bonds Disulphide bridges

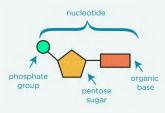
Biochemical Tests


Molecule	Reagent	Positive result
Reducing sugars	Benedict's reagent \rightarrow Heat	Red/orange precipitate
Starch	lodine in potassium iodide solution	Blue/black
Non-reducing sugars	Hydrochloric acid \rightarrow Heat Sodium hydrogencarbonate Benedict's reagent \rightarrow Heat	Red/orange precipitate
Proteins	Sodium hydroxide Copper (II) sulphate	Purple
Lipids	Ethanol Water → Shake	Cloudy white

Enzymes

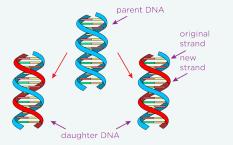
- Enzymes are biological catalysts that speeds up the rate of reaction and remains unchanged and reusable at the end of the reaction.
- They lower the activation energy of the reaction.
- The lock and key model proposed that each substrate is a key that only fits a specific lock or enzyme. The alternative induced fit model has been proposed (below)

- The specificity of enzymes is due to the tertiary structure of its active site, allowing complementary binding to substrates.
- Enzymes catalyse both intracellular and extracellular reactions that determine structures and functions from cellular to whole organism level.
- Factors affecting enzyme activity include:

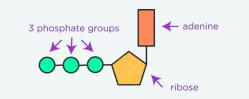

- hydroger carboxy aroun
- amino aroup R group central carbon

NUCLEIC ACIDS, ATP, WATER & INORGANIC IONS CHEAT SHEET

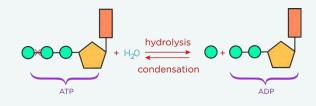
DNA & RNA


- DNA & RNA are both polynucleotides.
- The basic structure of a nucleotide is:

	DNA	RNA
Number of Strands	Two antiparallel strands	One strand
Length	Very long	Relatively short
Pentose Sugar	Deoxyribose	Ribose
Nitrogenous Bases	Adenine, Cytosine, Guanine & Thymine	Adenine, Cytosine, Guanine & Uracil
Function	Store genetic information	Transfer genetic information & forms ribosomes with proteins

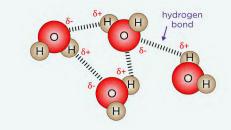

DNA Double Helix & Replication

- Polynucleotides are polymers made up of many nucleotide monomers joined together by a series of condensation reactions, forming phosphodiester bonds.
- The DNA double helix is held together by hydrogen (H) bonds between complementary base pairs.
- 2 H bonds between Adenine & Thymine
- 3 H bonds between Cysteine and Guanine
- Semi conservative replication is the method in which DNA replicates, creating two molecules of DNA that consist of one original DNA strand and one newly synthesised DNA strand.
- DNA helicase breaks H bonds between the two strands
- Free nucleotides complementary base pair to the exposed strands
- DNA polymerase catalyses condensation reactions to join adjacent nucleotides, forming phosphodiester bonds.



• The structure of ATP is:

	$ATP\toADP$	$ADP\toATP$
Reaction type	Hydrolysis	Condensation
Enzyme involved	ATP hydrolase	ATP synthase
Energy profile of reaction	Releases energy	Requires energy


- The hydrolysis of ATP can be coupled to energy-requiring reactions and used to phosphorylate compounds.
- The condensation of ADP to form ATP can occur during respiration and photosynthesis.

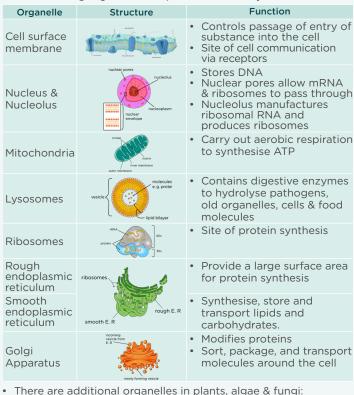
Inorganic lons

- Inorganic ions are atoms or molecules with an electric charge, containing no carbon.
- Cations are positively charged ions
- Anions are negatively charged ions
- Inorganic ions occur in solution in the cytoplasm and body fluids of organisms, some in high concentrations and others in very low concentrations
- Each type of ion has a specific role, depending on its properties
- Hydrogen ions determine the pH of bodily fluids. The higher the concentration, the lower the pH
- Iron ions are essential components of the prosthetic group in haemoglobin and bind to oxygen
- Sodium ions are used in the co-transport of glucose and amino acids across cell membranes
- Phosphate ions are essential components of DNA, RNA & ATP

Water

• Water molecules consist of 2 hydrogen molecules covalently to an oxygen molecule.

- The molecules are slightly polar because the oxygen nucleus pulls the shared electrons away from the hydrogen nuclei. Giving the oxygen nuclei a δ charge, and the hydrogen nuclei a δ + charge.
- The polarity of water causes attraction between water molecules. This force of attraction is called a hydrogen bond.

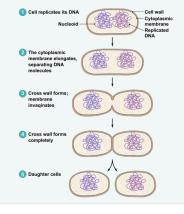

Property of water	Why it is useful
Liquid medium	Provides habitats for aquatic organisms, medium for chemical reactions & used for transport
Important metabolite	Used in hydrolysis & condensation reactions
High specific heat capacity	Keeps aquatic & cellular environments stable
High latent heat of vaporisation	Evaporation has a cooling effect on organisms
Cohesion of molecules	Water is drawn up the xylem
Surface tension	Allows pond-skaters to walk on the surface
Good solvent and transport medium	Dissolves ionic and polar molecules, allowing them to easily be transported
Good reaction medium	The cytoplasm in cells is an aqueous solution where many chemical reactions happen
Incompressible	Can prevent plants from wilting & act as a hydrostatic skeleton for invertebrates

CELL STRUCTURE & REPLICATION CHEAT SHEET

Eukaryotic Cells

• Eukaryotes include animal, plant, protist & fungal cells. • The following organelles are presents in eukaryotic cells:

Organelle	Structure	Function	Present in which organism
Chloroplasts	normal and the second s	Site of photosynthesis	Plants & algae
Cell vacuole	tonoplast membrane	 Maintains cell structure Act as a tempo- rary energy store 	Plants
Cell wall	cell-surface membrane Cellulose cell wall cytoplasm	 Provides support & mechanical 	Plants & algae
Cen wall	Cell membrane	strength	Fungi


- In complex multicellular organisms, eukaryotic cells become
- Specialised for specific functions.
- Specialised cells are organised into tissues, tissues into organs and organs into systems.

Prokaryotic Cells

Prokaryotes are smaller and simpler than eukaryotes.

5	5 1 5		
Feature	Eukaryotic Cell	Prokaryotic Cell	
Nucleus	Present	Absent	
DNA	Linear and packaged into chromosomes in nucleus. Bound to histones		
Cell Membrane	Present	Present	
Membrane- bound organelles	Present	Absent	
Ribosomes	Present (80S)	Present (70S)	
Cell Wall	Sometimes (cellulose or chitin)	Present (peptidoglycan/ murein)	
Chloroplasts	Sometimes	Absent	
Flagellum	Absent	Sometimes	
Capsule	Absent	Sometimes	
Plasmid	Absent	Sometimes	

Bacteria replicate by binary fission.

Viruses

- · Viruses are acellular and nonliving.
- The basic structure of viruses is: Viruses replicate by binding
- to the host cell, injecting their genetic material into the cell, lipid e using the host's machinery to replicate & burst out of the host cell.

netic materia

Methods of Studying Cells

• There are 3 main types of microscopes used to observe cells:

	Light Microscope	Scanning Electron Microscope	Transmission Electron Microscope
Medium	Light Beam	Electron Beam	Electron Beam
Dimensions	2D	3D	2D
Max Magnification	X1,500	X200,000	X2,000,000
Max Resolution	0.2 μm	20 nm	0.1 nm

- Magnification is how much bigger the image is compared to the original object viewed with the naked eye
- Magnification = (size of image)/(size of object)
- Resolution is how well a microscope distinguishes between two points that are close together.
- Cell fractionation can be used to separate organelles.
- Homogenisation grinding cells releasing the organelles into solution. Must be cold, isotonic and buffered
- Filtration separates organelles & debris
- Ultracentrifugation using a centrifuge the organelles are separated out in order of mass

Cell Division

- Within multicellular organisms, not all cells retain the ability to divide
- The eukarvotic cell cvcle has three main stages:
- Interphase consists of two growth phases $(G_1 \otimes G_2)$ and a DNA synthesis stage (S). The cell may exit the cell cycle at GO
- Mitosis is the nuclear division
- Cvtokinesis is when the cell splits in two, forming two identical daughter cells.

Stage	Description	
Prophase	DNA condenses & coils, nuclear envelope breaks down, centrioles move to opposite poles	Prophase
Metaphase	Spindle fibres attach to centromeres & chromosomes line at the equator	Mitosis Interphase Cytokinesis
Anaphase	Centromeres divides, chromatids move to opposite poles	63
Telophase	Chromosomes uncoil, nuclear envelope reforms	

- Cancerous cells have uncontrolled cell division and hence have a modified cell cycle - one that repeats too guickly.
- Treatments for cancer involve disrupting the cell cycle (chemotherapy) by stopping DNA synthesis or by changing the cytoskeleton in mitosis

CELL TRANSPORT & IMMUNITY CHEAT SHEET

Cell Membranes

- Cell membranes act as barriers and can control what passes into and out of cells and organelles
- The cell membrane is composed of phospholipids, proteins,
- glycoproteins, glycolipids and cholesterol. Cholesterol has a hydrophilic end and a hydrophobic end & regulates membrane fluidity by intercalating between the phospholipids.

Passive Transport

- Passive transport involves exchange of substances without requiring metabolic energy from the cell
- Diffusion is the net movement of particles from an area of higher concentration to an area of lower concentration (down their concentration gradient).
- Facilitated diffusion is the net movement of particles down their concentration gradient across a partially permeable cell membrane via carrier or channel proteins.
- Water potential is a measure of the tendency of water molecules to move from one area to another area and describes the pressure created by these water molecules: the more dilute a solution, the higher (less negative) the water potential (Ψ) .
- Osmosis is the net movement of water from an area of higher water potential to an area of lower water potential across a partially permeable membrane.
- The rate of diffusion can be increased by increasing the number of channel & carrier proteins, the surface area of the cell membrane, reducing the diffusion distance and creating a steeper concentration gradient.

Active Transport

Active transport is the movement of particles from an area of low concentration to an area of high concentration (against their concentration gradient) across a cell membrane, using ATP and carrier proteins.

- Co-transport occurs when the transport of one substance is coupled with the transport of another substance across a membrane.
- Glucose & sodium are co-transported in the ileum:

Phagocytosis

- Pathogens are engulfed by phagocytes using endocytosis
- Pathogens are stored in the phagosome
- A lysosome will fuse with the phagosome releasing hydrolytic lysozyme enzymes
- The pathogen is hydrolysed
- Some of it is used by the cell, some of it is presented on the cell surface membrane to activate lymphocytes

Components of the Immune System Vaccination

• Antigens are any part of an organism/substance which is recognised as foreign by the immune system and goes on to trigger an immune response.

Cell		Cell	Function	
Phagocytes		Macrophages Neutrophils	Engulfs and digests pathogens by fusion of the phagosome with lysosomes	
		Neutrophils		
		T helper cells	Stimulates B cells to divide and secrete antibodies. Divide to produce Cytotoxic T cells and T memory cells	
T cells	T cells	Cytotoxic T cells	kill abnormal cells and infected body cells via perforin	
			Remain in the blood for years and provide long term protection	
		Plasma cell	Secrete antibodies	
	B cells	B memory cell	Remain in the blood for years and provide long term protection	

Antibodies

- Antibodies are a protein produced by lymphocytes in response to the presence of the corresponding antigen.
- Antibodies agalutinate pathogens by forming antigen-antibody complexes, leading to phagocytosis & neutralise toxins.

Cell-mediated Immunity

- Antigen from the pathogen is displayed on the cell surface of body cells or phagocytes after phagocytosis
- T cells with the correct specific receptor bind with the antigen and are activated
- They divide by mitosis (clonal expansion) and differentiate into T helper, cytotoxic and memory cells.
- Cytotoxic t cells release perforin which destroys cell surface membranes, killing infected cells

Humoral immunity

- The humoral response is best at fighting pathogens which are free in the bodily fluids
- Free antigen binds to a complementary B cell receptor
- The pathogen is endocytosed, and the antigen presented on the plasma membrane
- Thelper cell binds to the presented antigen, activating the B cell (clonal selection) and stimulates the B cell to divide by mitosis (clonal expansion)
- The B cell differentiates to plasma and memory cells
- Plasma cells release antibodies, memory cells remain in the blood stream and allow a secondary immune response

Primary & Secondary Response

- The primary immune response is when a pathogen infects the body for the first time with the initial immune response being slow and leading to a low concentration of antibodies.
- The secondary immune response is a more rapid and vigorous response leading to a higher concentration of antibodies

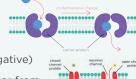
caused by a second or subsequent infection by the same pathogens. This is due to the presence of memory cells.

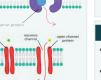
snaprevise.co.uk

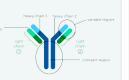
- Vaccination is the introduction into the body of a vaccine containing disease antigens, by injection or mouth, in order to induce artificial immunity
- Vaccines work by injecting weakened/dead pathogens into the body to stimulate an immune response, to form memory cells against the specific antigen, which destroy the pathogen auickly upon infection.
- Herd immunity is when the vaccination of a significant proportion of the population provides protection for individuals who have not developed immunity
- Pathogen may mutate so that its antigens change suddenly (antigenic variability) So the vaccine is now ineffective to the new antigens.
- Ethical considerations: side effects, financial cost, right to choose, animal testing of vaccines, human trials
- Active immunity occurs when specific antibodies are produced by the individual's own immune system
- Passive immunity occurs when specific antibodies are introduced to the individual from an outside source.

Immunity	Example
Natural Active	Direct contact with pathogen
Natural Passive	Antibodies through breastmilk
Artificial Active	Vaccination
Artificial Passive	Injection of antibodies/ antivenoms

Human Immunodeficiency Virus (HIV)

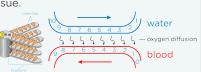

• HIV replicates in T helper cells, causing the symptoms of AIDs due to the decreased Th cell count. The compromised immune system leads to the risk of serious infections.



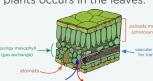

 Antibiotics kill bacteria by targeting bacteria specific enzymes or organelles. They are ineffective against viruses due to the virus using the host's machinery.

Using Monoclonal Antibodies

- Drugs can be attached to monoclonal antibodies, in order to ensure the delivery of the drug to specific cell types e.g. cytotoxic drug to a cancer cell
- Disease diagnosis can occur by testing for the presence of specific pathogen antibodies in the blood.
- Monoclonal antibodies are also used for pregnancy testing
- Measurement & diagnosis of disease occur in the ELISA test where different antigens are bound to the surface of a well. They attach to antibodies present in a sample, allowing the attachment of a detection antibody. An enzyme attached to the detection antibody digests a substrate, which is added, causing a colour change. The colour intensity corresponds to the amount of the antigen present in the sample
- Ethical considerations: treatment may cause death (risky), use of animals for production may cause harm, human trials



GAS EXCHANGE, DIGESTION & MASS TRANSPORT **CHEAT SHEET**


Gas Exchange

- Single celled organisms can exchange oxygen and carbon dioxide directly through their plasma membrane via diffusion.
- Insects exchange gas in their tracheal system. Air enters via spiracles, travels through trachea and tracheoles, delivering oxygen directly to every tissue.
- Gas exchange in fish occur via gills. The orientation of the gill filaments and lamellae ensures that the water flowing over them moves in the

opposite direction to the flow of blood through the capillaries (countercurrent flow), maintaining a diffusion gradient.

 Gas exchange in dicotyledonous plants occurs in the leaves. The stomata can open to allow gases diffuse in and out of the leaf. The mesophyll cells have a large surface area for rapid diffusion.

· Gas exchange can lead to water loss. Plants can control the opening of their stomata

to limit this, and xerophytes may have additional adaptations such as: hairs, waxy cuticle, small leaves, sunken stomata, rolled leaves. Insects can also control water loss but controlling open and closing of their spiracles, hair around spiracles and a waterproof, waxy cuticle.

Human Gas Exchange System

- In humans, gas exchange occurs via the lungs
- The alveolar epithelium is adapted for gas exchange by having a large surface area, good blood supply, thin walls & elastic fibres which help recoil
- Ventilation is the process of breathing in (inspiration) and out (expiration).
- Inspiration: external intercostal muscles contract, rib cage moves up & out, diaphragm contracts, volume of the thorax is increased. pressure in the thorax decreases so the atmospheric pressure is greater than the pulmonary pressure and air is forced into the lungs.
- Expiration: internal intercostal muscles contract, ribs move down and inwards, diaphragm relaxes, volume of the thorax is decreased, pulmonary pressure is greater than atmospheric pressure, air is forced out of the lungs

Surface Area to Volume Ratio

- The greater the size of an organism, the smaller its surface area: volume ratio
- Larger organisms therefore require specialised exchange surfaces and transport mechanisms to meet their metabolic requirements
- Specalised exchange surfaces have: a large surface area, thin barriers and associated transport systems to maintain save
- a steep diffusion gradient.
- Also, organisms with a higher metabolic rate require more nutrients and produce more waste, therefore require a specialised exchange surface

Mass Transport in Animals

• Red blood cells transport oxygen using the protein haemoglobin

oxygen + haemoglobin

saturation of haemoglobii with oxygen

- Haemoglobin is made up of four polypeptide chains, each containing a prosthetic haem group. Each haem group binds one oxvgen molecule
- Binding of the first O₂ molecule causes a conformational change in the haemoglobin, making the haem groups more accessible to oxygen.
- The final oxygen struggles to bind due to probability
- Bohr affect haemoglobin's oxygen binding affinity is inversely related to the concentration of carbon dioxide, causing the oxygen
- dissociation curve to shift
- · Animals with high metabolic rates have curves shifted to the right promoting oxygen disassociation due to a low oxygen affinity Animals living in a low partial pressure of oxygen are shifted

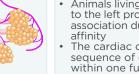
snaprevise.co.uk

- to the left promoting oxygen association due to a high oxygen
- The cardiac cycle is the sequence of events that occur within one full beat of the heart.

Veins and Venules transports blood towards from the heart

Tissue fluid formation:

Arteriole: Hydrostatic pressure > water potential Venule: Hydrostatic pressure < water potential Remaining fluid returns to circulation via the lymphatics system

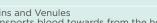

- During digestion, large biological molecules are hydrolysed to smaller molecules that can be absorbed across cell membranes
- Digestion enzymes in mammals includes:

Enzyme	•	Substrate	Product(s)
Amylase		Starch	Maltose
Membrane-	Maltase	Maltose	Glucose molecules
bound	Sucrase	Sucrose	Glucose & fructose
disaccharidases	Lactase	Lactose	Glucose & galactose
Lipase		Lipids	Monoglyceride & fatty acids
Endopeptidases trypsin & chymot		Hydrolyse peptide bonds in the middle region of proteins	Produce several polypeptide chains
Exopeptidases		Hydrolyse peptide bonds on terminal amino acids	Release single amino acids and dipeptides
Membrane-boundipeptidases	d	Dipeptides	Single amino acids

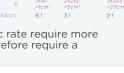
- The ileum is the final section of the small intestine where both hydrolysis and absorption occurs.
- Bile salts made by the liver, emulsify lipids in order to increase the surface area of the lipids, for greater access to lipases.
- Micelles are the products of lipase digestion that remain in association with the bile salts to form structures. The micelles travel to the ileum where, upon contact with the surface of ileum epithelium cells, they are broken down. This releases the non-polar monoglyceride and fatty acids, which diffuse straight into the epithelial cell.
- Inside, they move to the endoplasmic reticulum where they are combined forming triglycerides.
- They move to the Golgi apparatus where cholesterol is added forming chylomicrons
- Chylomicrons leave epithelial cells by exocytosis and move into lacteals.
- Amino acids and carbohydrates are absorbed via co-transportation with sodium.

Mass Transport in Plants

- The xylem transports water & mineral ions up the plant against gravity
- Water evaporates from the leaves creating tension (transpiration), and the cohesive nature of water moves the whole column of water up the xylem (cohesion-tension theory)
- The rate of transpiration is affected by: light, temperature, humidity & wind.
- The phloem transports assimilates from sources to sinks via translocation
 - - Sucrose is actively transported into the companion cells and moves via diffusion into the sieve tube followed by the the osmosis of water. Assimilates move from area of high to low pressure (mass flow). At the sink the solutes are removed, water leaving by osmosis.
 - To track the movement of sugars through the phloem, scientists' radioactive isotopes are used in tracer experiments with radioactive isotopes Ringing - removal of the bark and phloem, theoretically prevents translocation to the sinks below the ring



Circulatory system:


Arteries & Arterioles

transports blood away from the heart

Capillaries - area of metabolic

substance exchange

Tissue fluid

GENETIC INFORMATION, PROTEIN SYNTHESIS, CLASSIFICATION & BIODIVERSITY CHEAT SHEET

Genetic Information

- In prokaryotic cells, DNA molecules are short, circular and not associated with histones.
- In eukaryotes, the nucleus contains very long, linear DNA molecules associated with histones, called histones. Together a DNA molecule and its associated proteins form a chromosome.
- The mitochondria and chloroplasts of eukaryotic cells also contain DNA which, like the DNA of prokaryotes, is short, circular and not associated with histones.
- The genome is the full set of DNA found in an organism.
- The proteome is the full range of proteins that can be synthesised from the genome.
- A gene is a section of DNA that code for polypeptides and functional RNA and are located at a fixed locus on a DNA molecule.
- A sequence of three DNA bases, called a triplet, produces mRNA. Three RNA bases, called a codon code for a specific amino acid. The genetic code is universal, non-overlapping and degenerate.
- In eukaryotes, sections of the nuclear DNA do not code for polypeptides (introns). Exons are sections of DNA that code for amino acid sequences.

Biodiversitv

- Biodiversity is the variety of organisms in an area. It can be considered on a local or global scale.
- Species richness is a measure of the number of different species in a community.
- An index of diversity measure biodiversity taking into account species richness and the number of individuals in each species.
- Index of diversity = $(N(N 1))/(\Sigma n(n-1))$
- N = total number of organisms of all species
- n = total number of organisms of each species
- · Farming techniques reduce biodiversity. E.g. monoculture, use of herbicide & pesticides, hedgerow removal and woodland clearance.
- Conservationists protect biodiversity with methods such as: giving endangered species legal protection, creating protected area & The Environmental Stewardship Scheme.
- A balance between conservation and agriculture is needed.

Investigating Diversity

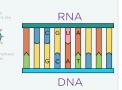
- Genetic diversity within or between species can be compared by looking at:
- The frequency of measurable/observable characteristics
- The base sequence of DNA
- The base sequence of mRNA
- The amino acid sequence of proteins
- Gene technology has caused a shift in methods of investigating genetic diversity from solely looking at observable characteristics
- Variation is caused by genetics & environmental factors.
- Variation can be investigated guantitatively within a species by collecting random samples (to reduce bias), calculating a mean value and the standard deviation of the data collected. Then interpreting mean values and their standard deviations.
 - Means may vary, showing variation between populations
- A large standard deviation indicates a large amount of variation within a population

Causes of Genetic Variation

- Variation can arise due to mutation.
- Gene mutations are changes to the base sequence or quantity of DNA within a gene or section of DNA.

Type of gene mutation	Description	
Substitution	When a nucleotide is changed to a different nucleotide. As the genetic code is degenerate, this may not change which amino acid is coded	
Insertion/ Deletion	Addition/removal of one or more nucleotides into the DNA sequence. May result in a frameshift	
Mutanania analysis and incurrent the units of some mutation		

- Mutagenic agents can increase the rate of gene mutation.
- Chromosome mutations are changes to the structure or number of whole chromosomes. E.g. failure of chromosomes to separate in meiosis (non-disjunction).
- Meiosis is also a cause of variation, as it produces 4 daughter cells that are genetically different from each other.

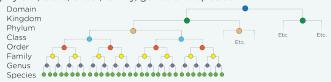

- In meiosis 1, homologous chromosomes are separated from each other, with one chromosome from each pair going into one of the two daughter cells. In the second meiotic division, the sister chromatids from each chromosome are separated.
- Variation results from independent segregation of chromosomes and crossing over during meiosis 1. Also, independent segregation during meiosis 2 as well as , random fertilisation of the haploid gametes.

Genetic Diversity & Adaptation

- Alleles are different forms of the same gene.
- Genetic diversity is the number of different alleles of genes in a population.
- Genetic diversity is a factor enabling natural selection to occur.
- Natural selection is a mechanism of evolution by which individuals better adapted to their environment tend to survive, reproduce successfully and pass on their alleles.
- In the process of natural selection: random mutation can result in new alleles of a gene, many mutations are harmful but, in certain environments, the new allele of a gene might benefit its possessor, leading to increased reproductive success. The advantageous allele is inherited by members of the next generation. As a result, over many generations, the new allele increases in frequency in the population.
- Direction selection is a selective force that favours individuals with an extreme form of a trait and selects against phenotypes at the other extreme. E.g. antibiotic resistance. Powerful antibiotics apply a very strong selection force favouring individuals possessing resistance alleles.
- Stabilizing selection is a selective force that favours the phenotypes closest to the mean value of a trait. E.g. Human birth weight. Babies that tend to the extremes of birth weight have higher mortality rates.
- Disruptive selection is a selective force that favours both extreme phenotypes. E.g. fur colour in a species where the landscape contains both black and white rocks, where grev fur provides a disadvantage. It can lead to speciation.
- Adaptations may be anatomical, physiological or behavioural.

Protein Synthesis

- Structure of tRNA & mRNA:
- Transcription is the process of making messenger RNA from a DNA template.
- RNA polymerase breaks the hydrogen bonds between the DNA helix, free RNA

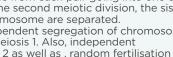


- nucleotides base pair with the exposed DNA template strand. RNA polymerase catalyses the condensation reactions forming phosphodiester bonds between the bound nucleotides
- In prokarvotes, transcription results directly in the production of mRNA from DNA.
- In eukaryotes, transcription results in the production of premRNA: this is then spliced to form mRNA.
- Translation is the process of making proteins by forming a specific sequence of amino acids based on coded instructions in mRNA.
- mRNA attaches to a ribosome on the rough endoplasmic reticulum, tRNA carries the corresponding amino acid to each codon on the mRNA one at a time, with an enzyme catalysing the formation of a peptide bond between amino acids using ATP, until a stop codon is reached and the peptide is released, folding into its tertiary structure. tRNA has an

anticodon which is complimentary to the mRNA codon

Classification

- The Biological Species Concept- a species contains all organisms that are capable of breeding together to produce living, fertile offspring.
- Courtship and mating behaviour are a vital part of species survival. Courtship behaviour enables individuals to: recognise same species members & identify mate capable of breeding.
- Classification is the process of sorting living things into groups.
 - Classification hierarchy comprises the taxa: domain, kingdom, phylum, class, order, family, genus and species,

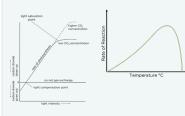


- Classifications are constantly updated as new methods are discovered to infer relationships e.g. DNA sequencing, amino acid sequencing or immunological comparisons.
- The binomial naming system names species by their genus and species name.
- Phylogeny is the study of evolutionary relationships between organisms. Baboon Orangutan Chimpanzee Hu
- In a phylogenetic diagram, branch Rhesus tips represent species at the end of their specific lineage, branching points represent common ancestors & The closer the branches, the closer the evolutionary relationship.

snaprevise.co.uk

Meiosis

PHOTOSYNTHESIS & RESPIRATION CHEAT SHEET

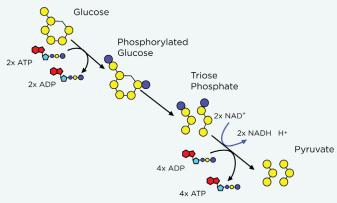


Photosynthesis

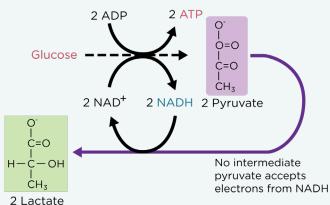
- Photosynthesis is the process in plants, from which energy from sunlight is used to convert simple molecules into complex molecules.
- The light-dependent reaction occurs in the thylakoids of the grana in chloroplasts
 - Chlorophyll molecules absorb light energy in a process called photoionisation, exciting a pair of electrons to a higher energy level, leaving the chlorophyll molecules ionized. The electron passes through an electron transfer chain providing energy to pump hydrogen ions into the inner membrane space
- Photolysis of water requires light energy to break the bonds between oxygen and hydrogen atoms

 $2H_2O \rightarrow 4H^+ + 4e^- + O_2$

- The photoionized chlorophylls electrons are replaced by the electrons from photolysis of water...
- Hydrogen ions which are pumped into the inner membrane space form an electrochemical gradient and move down it through an ATP synthase channel. This produces ATP from ADP + Pi. This is the called the chemiosmotic theory
- Hydrogen ions and electrons then combine with NADP producing reducing NADP
- Cyclic photophosphorylation recycles electrons back to chlorophyll, meaning that no reduced NADP is produced, only a small amount of ATP.
- The light-independent reaction occurs in the stroma of chloroplasts
 - The Calvin cycle depends on the products from the light dependant stage
 - The fixation of carbon dioxide is catalysed by RuBisCo
 - 5 out of every 6 TP molecules are used to regenerate RuBP instead of producing hexose sugars
 - TP is used to produce hexose sugars. Two molecules of TP are needed.


The rate of photosynthesis is limited by temperature and the availability of carbon dioxide, water & light energy.
The law of limiting factors states that at any given moment, the rate of a physiological process is limited by the factor that is at its least favourable value.

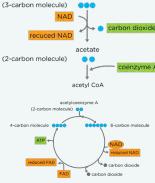
- Chromatography can be used to separate out photosynthetic pigments, identifying them by their $R_{\rm f}$ value


$$R_f value = \frac{\text{Distance travelled by spot}}{\text{Distance travelled by solvent}}$$

Anaerobic Respiration

- Respiration is the process, which occurs in living cells, that releases energy stored in organic molecules such as glucose.
- The energy released during respiration is used to synthesise molecules of ATP, which can be used as an immediate source of energy.
- The first stage of respiration is glycolysis which occurs in the cytoplasm of cells.
- There is a net yield of 2 pyruvate, 2 reduced NAD and 2 ATP molecules

- If oxygen is not available as the final electron acceptor, glycolysis can continue in anaerobic respiration.
- Glycolysis can continue if reduce NAD is reoxidised so that NAD is available to accept a hydrogen atom again.
- In mammals, the lactate fermentation pathway is used:



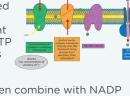
Lactate can be converted to glycogen in the liver or oxidised further to release energy, when oxygen is available.

- In plants and fungi, the ethanol fermentation pathway is used:
 pyruvate + reduced NAD → ethanol + carbon dioxide +
- pyruvate + reduced NAD → ethanol + carbon dioxide + oxidised NAD

Aerobic Respiration

- If respiration is aerobic, pyruvate enters the mitochondrial matrix by active transport.
- Next, the link reaction occurs:
- Following the link reaction, the Krebs cycle occurs.
- The final stage of aerobic respiration is oxidative phosphorylation.
- Reduced NAD and FAD donate electrons to the electron transfer chain in the inner mitochondrial membrane. The release of energy as the electrons pass down the electron transfer chain is used to create a proton gradient across the inner mitochondrial membrane into the intermembranal space. The proton

gradient is used to synthesis ATP by oxidative phosphorylation, catalysed by ATP synthase (chemiosmotic theory).


• Oxygen combines with the protons that have diffused through the ATP synthase channel and the electrons that have been passed along the electron transfer chain, acting as the final electron acceptor. It helps maintain the proton gradient for the electron transfer chain to continue.

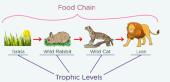
 $\frac{1}{2}O_2 + 2e^- + 2H^+ \rightarrow H_2O$

 Aerobic respiration produces 32 ATP. 30 more than anaerobic respiration. **MARKA** 100/010020340 Sugars such YWW WA prv a oawwo as glucose are not the only substances that can be used as a respiratory substrate. Lipids release

more energy than carbohydrates, due to more carbon-hydrogen bonds

Substrate	Process in respiration
Lipid	Hydrolysed to fatty acids and glycerol. Glycerol is phosphorylated and converted to triose phosphate, which enters the glycolysis pathway The fatty acid part is broken down into 2-carbon fragments which are subsequently converted into acetyl CoA, also generating reduce NAD & FAD
Protein	Protein is hydrolysed to amino acids. In the liver, the amino group is removed (deamination), and is converted to urea and removed in the urine. The remaining amino acid can then be converted to an intermediate

ENERGY, ECOSYSYEMS & NUTRIENT CYCLES CHEAT SHEET

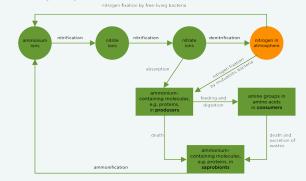


Biomass

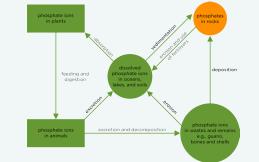
- Plants synthesise organic compounds from atmospheric, or aquatic, carbon dioxide.
- Most of the sugars synthesised by plants are used as respiratory substrates. The rest are used to make other groups of biological molecules, forming the biomass of the plant.
- Biomass is the total mass of living material in a specific area at a given time
- Dry biomass shows the chemical energy store in an organism and can be measured by the process of calorimetry. A dry sample is weighed and burnt in pure oxygen within a sealed chamber, the temperature increase of the fixed volume of water is used to calculate the energy released.

Production & Productivity

- Gross primary production (GPP) is the total quantity of chemical energy stored in plant biomass, in a given area or volume.
- Net primary production (NPP) is the chemical energy store in plant biomass after respiratory losses to the environment have been taken into account
 - NPP = GPP R
- $\,\circ\,\,$ Where R represents respiratory loses to the environment
- NPP, GPP & R use units of (kJ m⁻² yr⁻¹)
- The NPP is available for plant growth and reproduction. It is also available for consumers in the food chain such as herbivores and decomposers.


- Net production of consumers (N) is the total chemical energy consumers store after energy losses to faeces, urine and respiration have been taken away from the chemical energy store of the ingested plant food
 - N = I (F + R)
 - Where N is net production, I represents the total chemical energy store in ingested food, F is the energy lost in faeces and urine, and R is energy lost to respiration. All use units (kJ m⁻² yr⁻¹)
- Primary and secondary productivity is the rate of primary or secondary production, respectively. It is measured as biomass in a given area in a given time e.g. kJ ha⁻¹ year⁻¹
- The percentage efficiency of energy transfer from one tropic level to another can be calculated as

$\left(rac{energy\ available\ after\ the\ transfer}{energy\ available\ before\ the\ transfer} ight) imes100$


- Farming practices increase the efficiency of energy transfer to increase yields by:
- Reducing respiratory loses in a human food chain e.g. reduce movement of animals
- Simplifying food chains to reduce energy loss to non-human food chains e.g. killing weeds and pest using herbicides and insecticides

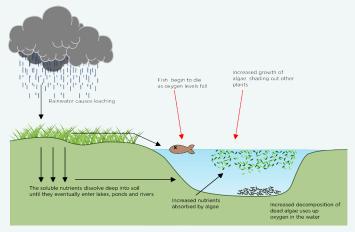
Nutrient Cycles

- There is a finite supply of nutrients on Earth, which are recycled within natural ecosystems.
- The Nitrogen cycle:

The Phosphorus cycle:

Microorganisms in Nutrient Cycles

• Microorganism play a vital role in nutrient cycles


Microorganism	Role
1ycorrhizae	Certain types of fungi associate with roots of plants to increase the surface area for absorption of water and mineral ions, including phosphate ions.
Free-Living Nitrogen- Fixing Bacteria	In the soil, they reduce nitrogen gas to ammonia.
Autualistic Nitrogen- Fixing Bacteria	Use nitrogen gas to produce amino acids
Saprobiontic organisms	Break down dead organism to release phosphate, ammonia or ammonium compounds
Nitrifying bacteria	Free living in soil, oxidise ammonium ions into nitrites and nitrites into nitrates
Anaerobic denitrifying bacteria	Use nitrates in respiration to produce nitrogen gas

The Use of Fertilisers

- Fertilisers can be used to provide plants with minerals, particularly nitrates, to support their growth
- In agriculture systems, the harvesting of crops prevents the reintroduction of minerals to the soil
- Natural ferilisers consist of dead and decaying remains of plants, animals and their waste
- Artificial fertilisers are mined from rocks before being converted into different forms with their composition tailored for specific crops.

Effect of using fertilisers	Description	
Reduced species diversity	Nitrogen-rich soils favour rapidly growing species	
Leaching (pollutes waterways)	Rainwater dissolves soluble nutrients (e.g. nitrates) and carries them deep into the soil and into waterways such as streams, rivers and lakes.	
Eutrophication	Nitrate levels increase in rivers and lakes due to leaching. The increased algal growth blocks light reaching the water underneath the surface, killing plants at a lower depth. The population of saprobiontic bacteria increase, respiring and reducing oxygen levels, killing other aerobic organisms like fish.	

• Eutrophication:

RESPONSES, RECEPTORS, NEURONES & SYNAPSES CHEAT SHEET

Responses

- All multicellular organisms need to respond to changes in their environment (stimuli) in order to survive
- Tropisms are a directional growth response in plants, in which the direction of the response is determined by the direction of the external stimulus
- Plants respond to directional stimuli using specific growth factors, which move to regions where they are needed from growing regions
- Indoleacetic acid (IAA) causes elongation of shoot cells, while it also inhibits root cell elongation in order to cause positive aeotropism & phototropism.
- In phototropism, IAA diffuses to the shaded side. In geotropism, IAA diffuses to the lower side.
- Taxis is the movement of an animal towards or away from a stimulus
- In kinesis animals change the rate of movement (turning or speed) in order to move towards favourable conditions
- Taxis & kinesis are simple responses that can maintain a mobile organism in a favourable environment.
- Reflexes are rapid responses that don't require conscious thought.
- Reflexes can quickly protect the body from harm, as it does not involve many synapses, they use simple mechanisms and are localized to the part of the body where they occur

Receptors

- Sensory receptors are specialised cells in the nervous system that detect physical stimuli and convert them into electrical signals (the generator potential)
- Sensory receptors tend to be specific to one type of stimulus. because they have specialised structures that are specific to one type of physical property
- Pacinian corpuscles detect changes in pressure in the skin.
- Increases in pressure cause a deformation of the lamellae of the Pacinian corpuscle, opening stretch-mediated sodium channels in the membrane. Sodium ions enter the sensory neuron,

causing a generator potential which can trigger an action potential

Photoreceptors

• The retina contains photoreceptors which detect light - rods and cones.

0	spor Photoreceptor	
Rod cells	Cone cells	
Provide black and white vision	Provide colour vision	
More sensitive to low light intensities than cones	s Comparing the responses from each type of cone receptor allows for colour vision	
Use the pigment rhodopsin to detect light	Use the pigment iodopsin to detect light	
More abundant than cone cells	Fewer numbers than rod cells	
Located more towards the periphery of the retina. Not present at the fovea	Concentrated at the fovea. Fewer at the periphery of the retina	
Multiple rod cells connect to a single bipolar cell	Cone cells connect to their own bipolar cell	
Provide poor visual acuity	Provide good visual acuity	

Control of the Heart Rate

- Cardiac muscle is myogenic, meaning it can contract and relax without receiving signals from the nervous system
- The sinoatrial node (SAN) sends out regular waves of electrical activity to the left & right atrial wall causing contraction. The electrical waves are then passed onto the atrioventricular node (AVN), then to the bundle of His. with a slight delay. The bundle of His splits into the Purkyne tissue, causing contraction of the left & right ventricles from the bottom up.
- The rate at which the SAN fires is controlled unconsciously by the medulla oblongata in the autonomic nervous system

Stimulus	Receptor	Effect
High blood bressure	Baroreceptors in the aorta & carotid arteries	Medulla sends impulses along parasympathetic neurones, using acetylcholine to reduce the heart rate
_ow blood pressure		Medulla sends impulses along sympathetic neurones, using noradrenaline to increase the heart rate
High blood O_2 , bH or low CO_2	Chemoreceptors in the aorta, carotid arteries & medulla	Medulla sends impulses along parasympathetic neurones, using acetylcholine to reduce the heart rate
Low blood D_2 , pH or high Co ₂		Medulla sends impulses along sympathetic neurones, using noradrenaline to increase the heart rate

Action Potentials

• When the neurone receives an impulse from sensory receptors, sodium channels on the dendrites open, leading to the movement of Na⁺ ions into the cell causing depolarisation. If this depolarisation reaches the threshold potential it activates voltage-gated sodium channels causing an action potential. After Voltage-gated sodium ion

channels close, and voltage-gated potassium channels open. causing Repolarisation as K⁺ ions leave the cell. Outward diffusion of K⁺ ions causes hyperpolarisation and the voltagegated potassium channels close. Finally, the Sodium-potassium pump returns the cell to the resting membrane potential.

- Action potentials are an all or nothing response because once the threshold is reached each action potential always depolarises the axon to the same voltage by voltage-gated sodium channels.
- The refractory period is the period in an action potential where the axon can't be depolarised to initiate a new action potential. It limits the frequency of action potentials and ensures action potential are discrete & only travel in one direction.

snaprevise.co.uk

Neurones & The Resting Potential

- A myelinated motor neurone:
- The resting potential is the difference in electrical charge across the membrane while the neurone is at rest
- The sodium-potassium pump uses ATP to pump 3 sodium (Na⁺) ions out of the cell and 2 potassium (K⁺) ions into the cell.

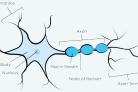
The membrane is permeable to K^+ but impermeable to Na^+ ions. These factors allow an electrochemical gradient to be set up. with the cell negatively charged at -70mV.

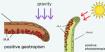
Transmission of Action Potentials

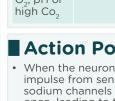
- Action potential are transmitted in non-myelinated axons because when a depolarisation happens, it causes voltagegated sodium channels to open further down the axon. By the time the depolarisation has spread, part of the axon is repolarising
- In myelinated axons, action potentials only occur at the nodes of Ranvier, with charge diffusing along the cell where myelin is present (saltatory conduction).
- Factors affecting transmission speed:

	Faster	Slower
Myelination	Myelinated	Unmyelinated
Axon Diameter	Wider	Narrower
Temperature	Warmer (Until Denaturing)	Colder

Cholinergic Synapse


Structure of a synapse:


• At a cholinergic synapse (acetylcholine is the neurotransmitter), an action potential arrives at the pre-synaptic knob, depolarising the membrane and causes voltage-gated calcium ion channels to open. The influx of Ca²⁺ ions causes the synaptic vesicles to fuse with the membrane. releasing


the neurotransmitter into the synaptic cleft. The neurotransmitter diffuses and binds receptors on the post synaptic membrane, causing an action potential.

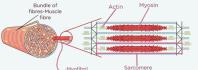
- Acetvlcholinesterase breaks down acetyl choline in the cleft. The synapses can be excitatory if
 - the neurotransmitter opens Na⁺ channels or inhibitory if the neurotransmitter opens chloride or potassium channels causing hyperpolarisation.
- Spatial summation is when action potentials from multiple presynaptic neurones are added together in a post-synaptic neurone
- Temporal summation is when multiple action potentials from a single presynaptic neurone are added together in a postsynaptic neurone over time.

Stimulus

MUSCLES & HOMEOSTASIS CHEAT SHEET

Neuromuscular Junction

- Structure of the neuromuscular junction:
- When an action potential reaches the junction, voltage-gated calcium channels open, causing calcium ions to diffuse into the neurone. Synaptic vessels fuse with the presynaptic


membrane and release acetylcholine into the synapse. It diffuses across the synapse and binds with receptors on the muscle cell surface membrane, opening sodium channels. The muscle fibre depolarisation causes an action potential and muscle contraction.

- Acetylcholinesterase breaks down acetylcholine to acetyl and choline
- Neuromuscular junction & cholinergic synapse differences

· · · · · · · · · · · · · · · · · · ·	3 • • 3 • • 1 • • • • • • • • • • •
Neuromuscular Junction	Cholinergic Synapse
Only excitatory	Can be excitatory or inhibitory
Links neurones to muscle	Links either neurones to neurones or neurones to other effectors
The action potential ends here	Another action potential may be generated along the post- synaptic neurones
Only motor neurones are involved	Relay, motor and sensory neurones may be involved
Acetylcholine binds to receptors on the membrane of the muscle fibre	

Skeletal Muscles

- Muscles act in antagonistic pairs against an incompressible skeleton to allow movement
- Skeletal muscle is made up of fibres called myofibrils, which in turn are made up of many repeating units, called sarcomeres
- Myofibrils are made up of two types of protein filaments, the thinner actin and the thicker myosin

	Slow-Twitch Muscle	Fast-Twitch Muscle
Type of Activity	Endurance	Burst of activity
Contraction Details	Contracts slowly and for longer Fatigues slowly	Contracts quickly and then relaxes rapidly
Mitochondria Density	High	Low
Type of Respiration	Aerobic	Anaerobic
Concentration of Myoglobin	High concentration	Low concentration
Glycogen & Phosphocreatine Stores	Small	Large
Muscle Colour	Dark	Light

Muscle Contraction

- The sliding filament theory describes how muscle contraction occurs
- An action potential travels into the muscle fibre via T tubules, causing release of calcium ions from the sarcoplasmic reticulum. The calcium ions bind to the tropomyosin molecules and cause them to move, exposing the myosin binding

site on the actin filament. Myosin attaches to actin forming a actin-myosin cross-bridge. ATPases hydrolyse ATP to detach the myosin head, allowing reattachment at a further site. This cycle continues, causing sarcomeres to shorten.

- When nervous stimulation stops, Ca2+ ions are actively transported back into the sarcoplasmic reticulum using energy from ATP hydrolysis. This allows tropomyosin to block the actin filament from binding to myosin and muscle contraction stops.
- ATP can be generated via aerobic or anaerobic respiration
- Phosphocreatine generates ATP quickly by adding phosphate to a molecule of ADP released by the contracting muscle

Communication Systems

- The neuronal system uses neurones to carry signals very rapidly through the body to produce short-term responses
- The hormonal system uses blood to carry hormones from endocrine glands to target cell with the specific receptors. This usually produces long-term responses.
 - Peptide hormones are made of amino acids and must bind to receptors on the cell surface, activating second messengers which control transcription.
 - Steroid hormones are formed from lipids and are soluble in the plasma membrane, therefore entering cells and binding to proteins to enter the nucleus and affect the DNA.

Diabetes

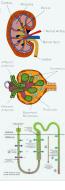
- Diabetes is a condition where the concentration of glucose in the blood cannot be controlled effectively. It can lead to hyperglycaemia after meals and hypoglycaemia after exercising.
- Type I diabetes is caused by an autoimmune attack on the β-cells of the pancreas, so the body cannot produce insulin. It can be treated by insulin injections.
- Type 2 diabetes is caused because the body does not produce enough insulin & the insulin receptors become less responsive. It can be treated by lifestyle changes (losing weight & exercising), drugs to stimulate insulin production and reduce glucose absorption and insulin injections in severe cases.

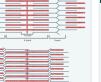
The Role of the Hypothalamus in Osmoregulation

- The hypothalamus contains osmoreceptors which signal to specialised neurosecretory cells. A fall in water potential causes the release of antidiuretic hormone (ADH) from the pituitary gland.
- ADH travels in the blood to the kidneys, attaching to ADH receptors, activating the intracellular enzyme phosphorylase. This causes vesicles containing aquaporins to fuse with the plasma membrane, reducing water loss by increasing the permeability of the collecting duct and distal convoluted tubule.

snaprevise.co.uk

- Homeostasis is the maintenance of a constant internal environment despite internal or external changes.
- Temperature & pH are important to regulate to allow optimum enzyme activity and rate of metabolic reactions.
- Water potential is important to regulate to prevent cells bursting or shrinking.
- Glucose concentration is important to regulate to allow cells to have access to the substrate for respiration, whilst preventing cell damage by dehydration caused by high concentrations.
- Negative feedback is the body's mechanism for reversing a change so that it returns to the optimum. The stages involve:


• Positive feedback is a deviation from the optimum which causes changes resulting in an even greater deviation from the norm. This is usually harmful due to the large, unstable change in the body.


Control of Blood Glucose Concentration

- Insulin is a hormone released from β -cells in the pancreas when blood glucose concentration rises in order to lower the concentration back to its optimum via negative feedback.
- When insulin binds to an insulin receptor, vesicles of glucose transporters fuse with the plasma membrane to allow more glucose to enter the cell. The membrane will become more permeable to glucose and the cell also uses more glucose in respiration and activated enzymes covert glucose into glycogen (glycogenesis).
- Glucagon is a hormone released from α -cells in the pancreas in response to low glucose concentration in order to increase the concentration back to its optimum. It does this by:
- Activating enzymes which break down glycogen into glucose (glycogenolysis).
- Producing glucose from other molecules
- Activating enzymes that convert glycerol (from lipids) and amino acids into glucose (gluconeogenesis)
- Adrenaline is released by the adrenal glands in times of stress and increases blood glucose concentration in anticipation of increased activity.
- Adrenaline binds to adrenaline receptors which activates adenyl cyclase. This converts ATP into cAMP, which acts as a second messenger to activate protein kinase. Protein kinase converts glycogen into glucose.

The Role of the Kidneys in Osmoregulation

- Osmoregulation is maintaining a constant water potential of the blood, despite changes in the level of water and salt intake.
- The kidneys are made if nephrons which help filter the blood. The blood undergoes ultrafiltration at the glomerulus due to the smaller diameter of the efferent arteriole than the afferent arteriole, creating high hydrostatic pressure.
- The filtrate passes into the Bowman's capsule and travels around the entire nephron, where certain ions and water are reabsorbed into the blood whilst the remaining filtrate is excreted as urine.
- Sodium is actively transported out of the proximal convoluted tubule and into the blood
- Glucose & amino acids are co-transported out of the proximal convoluted tubule via sodium ions diffusing into the epithelial cells.

Genes & Alleles

- The genotype is an organism's genetic composition.
- The phenotype is an organism's characteristics, often visible, which occur as a result of both its genotype and the impact of its environment.
- Genes are a sequence of DNA that code for a polypeptide.
- Genes can exist in 2 or more different forms called alleles.
- In diploid cells, chromosomes occur in pairs called homologous chromosomes. This means the alleles at a specific locus can be homozygous if they are both the same type of allele or heterozygous, if both the alleles are different.
- An allele is dominant if it is expressed in the phenotype of an heterozygous individual.
- An allele is recessive if it is not expressed in the phenotype of an heterozygous individual.
- An allele is codominant if it is expressed, along with the other allele, in the phenotype of a heterozygous individual.

Phenotype

Genotypes:

Gamete formation

F1 generation

F1 cross

F₁ gametes

F₂ genotypes:

F₂ phenotypes

P1 cross:

Tall Dwarf

TT×tt

Gametes(t)

Fertilization

Ťt

All tall

Tt × Tt

 $\mathbf{\hat{\mathbf{h}}}$

(t)

Tt

TT

tt

(t)

 $\overline{\mathbf{t}}$

(T)

Tt

round yellow

ound green

Monohybrid Inheritance

- Monohybrid inheritance is the inheritance of a single gene.
- A test cross be used to work out the unknown genotypes of individual organisms.
- In the test cross the unknown genotype is crossed with a homozygous recessive individual. If all the offspring have the dominant phenotype, the unknown genotype was homozygous dominant for the trait. If half the offspring have the recessive phenotype, the unknown genotype was

Dihybrid Inheritance

 Dihvbrid inheritance involves the inheritance of two different characteristics simultaneously.

heterozygous.

- During a dihybrid cross, alleles are independently assorted during gamete formation. A punnet square can show all possible genotype and phenotypes of offspring:
- In a dihybrid F1 generation cross, the phenotypic ratio for the F2 generation is always 9:3:3:1.

Linkage

• Autosomal linkage occurs if two or more genes are located on the same autosome (non-sex chromosome). The two genes are less likely to be separated during meiosis, resulting in the

GN

GGNN

GgN

parental

gametes

linked genes being inherited together.

- For example, if GN & gn are linked in heterozygous grey bodies and normal winged individuals (GgNn), you get
- ratio Sex linkage occurs when there is a gene on the X chromosome, not present on the Y chromosome.
- This means that males are more likely to exhibit recessive disorders like haemophilia

Epistasis

- Epistasis is the interaction between two non-linked genes which causes one gene to mask the expression of the other in the phenotype.
- Epistatic genes can work antagonistically (against each other) or in a complementary fashion.
- When a gene suppresses another gene, the gene doing the suppressing is called the epistatic gene. The gene which is being suppressed is called the hypostatic gene.
- Antagonistic epistasis can be either recessive or dominant.
- In dominant antagonistic epistasis, the expression of the dominant allele of the epistatic gene prevents the expression of the hypostatic gene. This means that any genotypic combination with either one or two of the dominant alleles for the epistatic gene will suppress the expression of the hypostatic gene.
- Recessive epistasis occurs when the presence of two copies of the recessive allele at the first locus prevents the expression of another allele at a second locus.
- In complementary epistasis, the two genes work together, for example, they may encode two enzymes that work in succession.

coat colour in mice. A/a is the epistatic gene

alleles of the

- GN gn grey body + normal wings grey body + a 3:1 phenotypic
 - parental gametes phenotypes: normal symptomless normal female

gn

GgNr

ggnn

grey body +

black body +

vestigial wings

This produces a 9:4:3 phenotypic ratio

Chi-squared Test

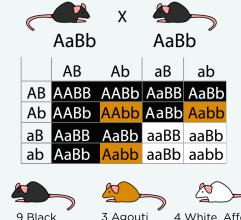
- If during an experiment, an unexpected result is obtained, we need to determine whether this unexpected result is due to chance or attributable to a specific cause (significant or not).
- The chi-squared test is a type of statistical test that allows us to calculate whether the difference between the results we observe and the results we expected is significant.
- The null hypothesis assumes that there is no significant difference between the observed and expected results.

O is the observed numbers (no units) E is the expected numbers (no units)

- The χ^2 value is then compared to a critical value, found from a chi-squared table by looking at the p-value and degrees of freedom
 - The degrees of freedom is the number of categories (or classes) minus one
 - The p-value is normally taken as 0.05, meaning that there is a 5% probability that the result is due to chance only
- If χ^2 < critical value, then the results are not significant (are due to chance). The null hypothesis is accepted.
- If γ^2 > critical value, then the results are significant (are attributable to a specific cause). The null hypothesis is rejected.

Complementary Epistasis Example

• An example of complementary epistasis is in the inheritance of


AA & Aa produces coloured fur

aa produces no pigment-white fur

B/b is the hypostatic gene

BB & Bb encodes for black coloured fur

bb produces encodes for agouti coloured fur

POPULATIONS, EVOLUTION & ECOSYSTEMS CHEAT SHEET

Populations

- A species is a is a group of individuals that have common ancestry and are capable of breeding with each other and producing fertile offspring.
- Species exist as one or more populations
- A population is a group of organisms of the same species occupying a particular space at a particular time that can potentially interbreed.
- A gene pool is all of the alleles of all the genes of all the individuals of a population
- Allele frequency is the proportion of the individuals that have one copy of an allele
- Allele frequencies change in response to selection pressures by natural selection between and within populations.

Population Genetics

- Populations can be imagined as gene pools consisting of all the alleles of all the genes of all the individuals in the population
- Populations change and evolve as allele frequencies change across generations
- The frequency of alleles of a particular gene in a population can be determined using the equation encompassed by the Hardy-Weinberg Principle
- Hardy-Weinberg equations:

p + q = 1p2 + 2pq + q2 = 1

- Where:
- p is the frequency of dominant allele
- q is the frequency of recessive allele

p² is the proportion of individuals that are homozygous dominant (AA) q² is the proportion of individuals that are homozygous recessive (aa) 2pq is the proportion of individuals that are heterozygous (Aa)

- Using the equations, the allele frequencies of a specific gene, genotypes & phenotypes in a population can be estimate.
- The Hardy-Weinberg Principle assumes that the proportion of dominant and recessive alleles of any gene in a population remains the same from one generation to the next. The conditions for this are that:
 - The population is large
 - There are no mutations
 - There is no selection
- Mating is random within the population
- The population is isolated

Variation

- Within any population of a species there will be phenotypic variation
- Characteristics that show continuous variation are normally polygenic (determined by many gene loci that have additive effects on each other).
- Characteristics that show discontinuous variation are usually monogenic (determined by a single gene loci).
- Variation is due to genetic and environmental factors.
- The main source of genetic variation is mutations, which can produce different alleles of genes.
- Further sources of genetic variation include meiosis (independent assortment and crossing over) and the random fertilisation of gametes during sexual reproduction to create new allele combinations.
- The environment can influence the way an organism's genes are expressed. This can be because of biological factors such as predators or non-biological factors such as sunlight.

The Effect of Selection on Allele Frequencies

- Predation, disease and competition means that not all individuals within a population survive to get a chance to reproduce. This differential survival and reproduction is the process by which natural selection acts.
- The organisms with phenotypes that provides a selective advantage are more likely to reproduce and thus pass on their favourable alleles to the next generation. This means that the proportional of individuals with the favourable allele will increase in the next generation (increase the allele frequency) within the population. The population evolves.
- Evolution is the change in allele frequencies in a population over time.
- Directional selection results in the increase of a favoured extreme allele over time
- Stabilising selection maintains the average phenotype in the population
- Disruptive selection results in the increase of both favoured extreme alleles over time. This leads to speciation

Speciation

- Speciation is the evolution of new species from existing ones.
- Reproductive isolation followed by accumulation of genetic changes through natural selection can result in the formation

of a new species. This is because the populations become genetically distinct with different allele combinations, making them unable to breed to produce fertile offspring.

- Allopatric speciation is the formation of two species from an original one due to geographical isolation.
- Sympatric speciation is the formation of two species from one original species due to reproductive isolation whilst occupying the same geographical location. This can be by:
- Temporal variation breeding seasons at different times.
- Behavioural variation mutations affecting courtship.
- Mechanical variation anatomical differences preventing mating.
- Gametic variation results in genetic or biochemical incompatibility.
- Hybrid sterility cannot produce viable gametes.

Genetic Drift

- Genetic drift describes change in allele frequencies in the gene pool of a population (evolution) due purely to chance events and not selection pressures.
- Due to the random nature of gamete production and fertilisation, certain alleles may increase in the population due to chance.
- The effect of genetic drift is more prominent within small populations because chance has a greater influence, whereas in larger populations the random fluctuations even out across the whole population.

snaprevise.co.uk

Ecosystems & Population Size

- A community is all of the populations of different species living and interacting in a place at the same time.
- An ecosystem is the dynamic interaction between all the living (biotic) and non-living (abiotic) factors in a given area.
- Within an ecosystem, every organism occupies a specific ecological niche
- A niche includes all the abiotic and biotic conditions of the environment which organisms are adapted to.
- The carrying capacity is the maximum population size that can be maintained over a period in a particular habitat.
- The limiting factors of the carrying capacity include abiotic factors:
 Temperature & pH each species has its optimum levels, and
 - deviations from this optimum reduces population growth
 Light low light levels reduce the carrying capacity of
- Producers, reducing the population size of consumers
 Water low water availability reduces the population size
- The limiting factors of the carrying capacity include biotic factors:
- Interspecific competition (between different species)
- Intraspecific competition (within the same species)
- Predation

evolved

← variation in a trait →

← variation in a trait →

Disruptive selectio

evolved

original

original population

- The size of a population can be estimated by:
- Randomly placing quadrats, or quadrats along a belt transect, for slow-moving or non-motile organisms. Can count the number of individuals of each species in the quadrat or percentage cover.
- The mark-release-recapture method for motile organisms. Population size = $\frac{sample \ 1 \ size \ \times \ sample \ 2 \ size}{sample \ 1 \ size \ \times \ sample \ 2 \ size}$

of marked in sample 2

It assumes there is no deaths, births, migration, marking has no effect and enough time for the animals to mix.

Succession

- Succession is the series of changes in an ecosystem over time.
- Primary succession is the progressive colonisation of bare rock or other barren terrain by living organisms.
 - The area is first colonised by the pioneer species, changing the abiotic factors to be less hostile for other species to survive.
 - Different species may be present at each stage, who change the environment so that it becomes more suitable for other species with different adaptations but less suitable for the previous species - changing biodiversity.
- The climax community is when a stable state is reached, where there is high biodiversity and a number of new species. The biodiversity can be reduced when the climax community is reached as one species may dominate.
- Secondary succession is the recolonization of an area after an earlier community has been removed or destroyed. It starts of with a basic soil.

Conservation

- Conversations is the maintenance of biodiversity, including diversity between species, genetic diversity within species and maintenance of a variety of habitats and ecosystems.
- Conservation involves active human involvement and is often orientated around managing a community by halting succession, to preserve species that would be extinct by the climax community being established, reducing biodiversity.
- The rate of growth of the human population creates an increasing demand for raw material and food. A balance between conversation and human needs is necessary in order to maintain the sustainability of natural resources.

STEM CELLS, MUTATIONS, GENE REGULATION, CANCER & GENOME PROJECTS CHEAT SHEET

Mutations

- Gene mutations are changes to the base sequence or quantity of DNA within a gene or section of DNA.
- Gene mutations occur spontaneously during the process of DNA replication.
- The mutation rate is increased by mutagenic agents, which are chemical, physical or biological agent that causes mutations e.g. UV light

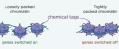
Type of Mutation	Description	
Addition	Addition of one or more nucleotides	
Deletion	Removal of one or more nucleotides	
Substitution	A nucleotide is replaced by a different nucleotide	
Inversion	A sequence of bases is separated and then reattached in the inverse order	
Duplication	One or multiple bases are repeated	
Translocation	A piece of DNA breaks off and doesn't reattach to itself or its homologous pair.	

- Some mutations may only affect a single codon, changing a single amino acid in a protein, therefore the protein may remain functional. Other may have no effect on protein structure due to the genetic code being degenerate.
- Mutations such as insertions and deletions can cause frame shifts, changing all the codons and amino acids downstream from the mutation. This results in a dysfunctional protein.

Stem Cells

- Stem cells are undifferentiated cells that are able to express all of their genes and divide by mitosis.
- During development, the stem cells undergo cell differentiation. This is the process by which cells become specialised for different functions.
- Fully developed cells are unable to divide by mitosis.

Stem Cell	Ability	
Totipotent	Can divide and differentiate into any type of cell.	
Pluripotent	Can self-renew and differentiate into any type of cell except the cells that make up the placenta.	
Multipotent	Can only differentiate and divide into a limited number of cell types	
Unipotent	Can only differentiate into a single type of cell e.g. cardiomyoblasts can only differentiate into cardiomyocytes.	


- Totipotent stem cells are only present in mammals in the first few cell divisions of an embryo. During development, totipotent cells become specialised by expressing different genes and producing different proteins.
- Induced pluripotent stem cells are unipotent stem cells that have been reprogrammed to become pluripotent by using protein transcription factors to express genes associated with pluripotency.
- Pluripotent stem cells can be used to replace cells and treat human disorders like leukaemia and diabetes.

Transcription Factors

- In eukaryotes, transcription of target genes can be regulated by DNA-binding proteins (transcription factors). They can help RNA polymerase bind (activators) or prevent it binding (repressors).
- The steroid hormone oestrogen, released from the ovaries in women, can initiate transcription in target cells.

Epigenetics

- Epigenetics changes in DNA that alter the expression of genes without changing the base sequence of DNA itself. It involves the addition of chemical tags onto DNA or histones.
- The epigenetic changes can regulate transcription by changing how tightly the chromatin is packed (chromatin remodelling), affecting RNA polymerase accessibility.

- DNA methylation prevents transcription by preventing transcription factors from binding & chromatin condensation.
- Acetylation of histones promotes transcription by decreasing the attraction between DNA and histones, making chromatin more loosely packed.
- The epigenetic changes in gene function can be heritable.
- Epigenetic changes occur during development but can also be caused by environmental factors e.g. smoking.

Regulating Translation

- In eukaryotes and prokaryotes, the translation of mRNA can be inhibited by RNA interference (RNAi).
- RNAi involves the degradation of the mRNA, reducing the gene's level of expression. Small interfering RNA (siRNA) can carry out this process.

RNA cut into

Oncogenes & Tumour Suppressor Genes

- Oncogenes are genes that stimulate cell division e.g. they may encode growth factors or cell cycle regulators.
- Many cancers are found to have cells with abnormal DNA methylation (epigenetic changes). Detecting these changes can help diagnose, while reversing these changes may help cure these diseases.
- Oncogenes can be hypomethylated in the promoter regions to upregulate transcription and expression to cause excessive proliferation in a tumour.
- Tumour suppressor genes are genes that prevent tumour formation by repairing DNA damage, regulating cell division and promoting apoptosis.
- Tumour suppressor genes can be hypermethylated in the promoter region to prevent transcription, allowing increased cell divisions with a higher mutation rate. Resulting in cancerous tumours.
- Oestrogen binds to a transcription factor, which activates genes to promote cell division. Increased oestrogen concentrations in the adipose tissue in the breast of post-menopausal women has been linked to breast cancer development.

snaprevise.co.uk

Tumours

Abnormal and fast cell division of mutant cells can form a tumour.

Benign Tumours	Malignant Tumours
Slow growth rate	Faster growth rate
Cells remain well- differentiated	Cells tend to de-differentiate and become unspecialised
Tumours are surrounded by a capsule made of dense tissue (compact structure)	Tumours are not surrounded by a capsule
Cells produce adhesion molecules	Cells stop producing adhesion molecule. Can spread through the body (metastasis)
Can usually be removed by surgery.	Chemotherapy and radiotherapy are used, which specifically target and kill rapidly dividing cells.

Genome Projects

- DNA sequencing is the process used to determine the precise sequence of nucleotides in a length of DNA.
- The technique whole-genome shotgun sequencing is used. The genome is cut into smaller fragments and individually sequenced. The entire genome is then reassembled by computer algorithms, which align sections of DNA that overlap.

- Next-generation sequencing methods have recently been developed which are faster, more automated and cheaper.
- Whole-genome sequencing allows the genomes of many individuals within a species, to be compared.
- This can have important medical implications by looking for associations between substitution mutations (single nucleotide polymorphisms, SNPs) and susceptibility to disease.
- In simpler organisms, such as pathogens, genome sequencing allows the proteome to be determined. This can help determine potential cell surface proteins that act as antigens, which can be used in vaccine development.
- In more complex organisms, determining the proteome is more difficult due to the presence of introns, regulatory genes affecting the expression of other genes & the effect of epigenetic changes.

Multipotent stem cells

GENE TECHNOLOGIES CHEAT SHEET

Genetic Engineering

- Genetically modified organisms are organisms that have had their DNA altered through recombinant DNA technology.
- Recombinant DNA technology involves the transfer of fragments of DNA from one organism, or species, to another.
- Transgenic organisms can successfully express a gene from any organism, as the genetic code and mechanism of protein production (transcription and translation) are universal.
 DNA fragments are created by:
- Using restriction endonucleases to cut at recognition sites near the desired gene
- Converting the mRNA of the desired gene to cDNA, using reverse transcriptase. Double stranded DNA is then synthesised using DNA polymerase
- Synthesising the gene using a gene machine. The gene sequence is determined by the primary protein structure.
- The isolated gene is then modified by the addition of a promoter and a terminator region.
- A vector is used to transfer the isolated gene into a host cell. This is mainly a plasmid.
- Restriction endonucleases are used to cut plasmids open, creating sticky ends. The same endonuclease isolates the gene, so the sticky ends of the desired gene and the plasmid are complementary. DNA ligase joins them together.
- To reintroduce the desired DNA into bacterial cells, the recombinant plasmid must pass through the cell surface membrane of a bacterial cell (transformation).
- Transformation involved mixing the bacteria and plasmids in a medium containing Ca²⁺ ions, which increased membrane permeability. Changes in temperature also make the bacterial cell surface more permeable.
- The transformed host cells can be cultured as an in vivo method to amplify DNA fragments.

Diagnosing Heritable Conditions

- Genetic screening is the study of an individual's DNA to identify whether an individual possesses alleles associated with a genetic disease.
- Genetic screening can be carried out using DNA probes which are short sections of DNA that are complementary to a known DNA sequence (e.g. a mutant allele). The probes are labelled using fluorescence or radioactivity.
- The labelled DNA probe, which is complementary to a mutant allele, is mixed with denatured DNA samples from a patient. If the patient has the mutant allele, the probe will bind to the complementary base sequence in one strand (hybridization). The hybridized DNA can be detected using radiation or fluorescence.
- DNA probes can be used to screen patient for different genetic diseases, to see if they are carriers for a recessive mutation or to see if they are at risk of developing a disease like cancer, by having mutated oncogenes or tumour suppressor genes.
- Genetic screening also allows medicine or treatments to be precisely tailored to an individual's genotype (personalised medicine).
- After receiving the results of genetic screening, individuals may require genetic counselling. This is a service that provides support, information and advice about genetic conditions.

Marker Genes

- Transformed bacteria can be detected using marker genes.
- The plasmid contains 2 marker genes
- The first marker gene is used to identify which bacteria have successfully taken up a plasmid. It tends to be an antibiotic resistance gene, so transformed bacteria are identified by growing on a medium containing the antibiotic
- The second marker distinguishes between bacteria that have taken up an empty or recombinant plasmid. When a recombinant plasmid is formed, the desired gene is inserted in the middle of the second marker gene making it nonfunctional. Therefore, bacterial cells that express the second marker gene do not contain the recombinant plasmid.
- The second marker gene has easily identifiable phenotypes such as:
 - Producing a fluorescent protein
 - Providing resistance to a different antibiotic
- Producing an enzyme whose action can be identified.

Polymerase Chain Reaction (PCR)

• PCR is a method of amplifying DNA by artificial replication in vitro.

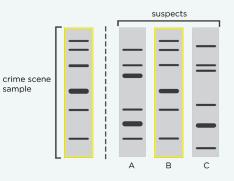
Е

 It requires: DNA sample of around 10,000 base pairs, nucleotides, Taq polymerase (stable at high temperatures), primers and a thermocycler to carry out the automated process.

The Use of Genetically Modified Organisms (GMOs)

GMO	Benefits	Issues	
Plants	 Herbicide resistance Pest resistance Disease resistance Drought resistance Extended shelf-life Increased nutrition 	 Development of superweeds Pests or pathogens evolving resistance Potential transfer of antibiotic resistance to pathogens in the intestine of the consumer Farmers must repeatedly buy seeds 	
Animals	 Disease resistance Increased growth rates e.g. continuously producing growth hormones Used to produce medicinal drugs and proteins 	 Harmful side effect to animals Ethical issue of insertion of human genes Most GM animals die during development 	
3acteria	 Used to produce medicine e.g. human insulin which is cheaper and has a lower risk of rejection and infection than pig insulin 	 Potential antibiotic resistance genes being transferred to pathogens May result in the production of more lethal pathogens 	
The risk of GM bacteria can be reduced by modifying the			

• The risk of GM bacteria can be reduced by modifying the bacteria so that they are unable to produce an essential nutrient or amino acid and cannot survive outside the lab.


snaprevise.co.uk

Genetic Fingerprinting

- Genetic fingerprinting is a method used to produce a specific pattern of DNA bands from an individual's genome.
- The non-coding regions of DNA contain short, repeating sequences called variable number tandem repeats (VNTRs).
- VNTRs are found at many locations in the genome. In every individual, they vary in length and the in the number of repeats at different loci. Therefore, the probability of two individuals having the same VNTRs is very low.
- The steps in DNA fingerprinting include:
- Extraction of DNA & amplification using PCR
- DNA digestion using specific restriction endonucleases, leaving the VNTRs intact
- Separation of DNA fragment by gel electrophoresis. Smaller fragments travel faster and therefore move further down the gel
- Hybridisation of the VNTRs at specific (complementary) base sequences with Radioactive or fluorescent DNA probes
- Development. The banding pattern can then be visualised as radiation, emitted by fragments, exposes X-ray film (placed over the gel) and reveals their final positions.

- The DNA profiles can be compared to determine genetic relationships by looking for similarities in the banding pattern.
- DNA profiles can also be used in:
- Forensic science investigations comparing the DNA profiles of suspects and DNA at the crime scene.

- Medical diagnosis DNA profiles can identify individuals at risk of developing specific diseases, as some VNTRs are correlated with an increased risk of disease e.g. Huntington's disease.
- Animal and plant breeding DNA profiles are used to prevent inbreeding by not breeding individuals with similar profiles.
- Paternity determination half the DNA profile of the child should match the father.